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M2 suggested elementary short questions 
 

1. Let 𝑦𝑦 = 𝑒𝑒3𝑥𝑥. Find d𝑦𝑦
d𝑥𝑥

 from first principles. 

 
 
2. (a) Using mathematical induction, prove that 

�𝑘𝑘3 =
𝑛𝑛2(𝑛𝑛 + 1)2

4

𝑛𝑛

𝑘𝑘=1

 for all positive integers 𝑛𝑛. 

 
(b) Using (a), evaluate 33 + 63 + 93 + ⋯+ 3003. 

 
 
3. Let n be a positive integer. The coefficient of 𝑥𝑥2 in the expansion of (1 + 3𝑥𝑥)𝑛𝑛(1 − 2𝑥𝑥)2 

is 160. Find 
 

(a) n, 
(b) the coefficient of 𝑥𝑥3 in the expansion. 

 
 

4. (a) Using integration by substitution, find ∫ 𝑥𝑥
𝑒𝑒𝑥𝑥2

d𝑥𝑥. 

  (b) At any point (x, y) on the curve C, the slope of the tangent to C is 3𝑥𝑥
𝑒𝑒𝑥𝑥2

. If the point (0, 1) 

lies on C, find the equation of C. 
 
 

5. (a) Prove that sin (𝛼𝛼+𝛽𝛽)−sin (α−𝛽𝛽)
cos (𝛼𝛼+𝛽𝛽)+cos (α−𝛽𝛽)

= tan𝛽𝛽. 

      
(b) Suppose that sin(𝑥𝑥 + 𝑦𝑦) − 2cos(𝑥𝑥 + 𝑦𝑦) = 2cos(𝑥𝑥 − 𝑦𝑦) + sin(𝑥𝑥 − 𝑦𝑦)  for some real 

numbers x and y. Using (a), or otherwise, find the value of tan2𝑦𝑦. 
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6. Define f(𝑥𝑥) = 3𝑥𝑥2−𝑥𝑥+2
𝑥𝑥+1

 for all 𝑥𝑥 ≠ −1. Denote the graph of 𝑦𝑦 = f(𝑥𝑥) by C. Find  

(a) the asymptote(s) of C, 

(b) the equation of the tangent to C at the point with the x-coordinate −2. 
 
 

7. Consider the curve C: 𝑦𝑦 = cos𝑥𝑥 sin2𝑥𝑥, where 0 ≤ 𝑥𝑥 ≤ 𝜋𝜋
2
. 

Find the extreme point(s) of C. 
 
 
8. (a) Express  (sec𝑥𝑥 − cos𝑥𝑥)2  in the form of sec2𝑥𝑥 + 𝑝𝑝cos2𝑥𝑥 + 𝑞𝑞 , where p and q are   

constants.    

(b) Using the result of (a), or otherwise, evaluate ∫ (sec𝑥𝑥 − cos𝑥𝑥)2d𝑥𝑥
𝜋𝜋
4
0 . 

 
 
9. (a) Find ∫𝑥𝑥ln2𝑥𝑥 d𝑥𝑥. 

(b) Consider the curve C: 𝑦𝑦 = √𝑥𝑥ln2𝑥𝑥, where 𝑥𝑥 ≥ 1
2
. Let R be the region bounded by C, the 

x-axis and the straight line x = 5. Find the volume of the solid generated by revolving R 
about the x-axis. 

 
 
10. M is a point lying on XY such that XM : MY = 1 : 2. Let 𝑂𝑂𝑂𝑂�����⃑ =  𝐱𝐱 and 𝑂𝑂𝑂𝑂�����⃑ = 𝐲𝐲, where O is 

the origin. 
    

(a) Express 𝑂𝑂𝑂𝑂������⃑  in terms of x and y. 

(b) It is given that |𝐱𝐱| = 2, |𝐲𝐲| = 3 and 𝐱𝐱⋅𝐲𝐲 = 2. Using the result of (a), find �𝑂𝑂𝑂𝑂������⃑ �. 
 
 
11. Let 𝑂𝑂𝑂𝑂�����⃑ = −𝐢𝐢 + 3𝐣𝐣 + 3𝐤𝐤, 𝑂𝑂𝑂𝑂�����⃑ = 𝐢𝐢 − 𝐣𝐣 + 3𝐤𝐤 and 𝑂𝑂𝑂𝑂�����⃑ = 2𝐣𝐣 + 5𝐤𝐤. 
 

(a) Evaluate 𝑂𝑂𝑂𝑂�����⃑ × 𝑂𝑂𝑂𝑂�����⃑ . 
(b) Using the result of (a), or otherwise, find the angle between OC and the plane OAB. 
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12. Consider the following system of linear equations in real variables x, y, z 

   (E): �
3𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1
−𝑥𝑥 + 𝑎𝑎𝑎𝑎 = 𝑏𝑏

2𝑥𝑥 + 𝑦𝑦 + 3𝑧𝑧 = 2
, where a and b are real constants. 

 
(a) Assume that (E) has a unique solution. 

(i) Find the range of values of a. 
(ii) Express y in terms of a and b. 

(b) Assume that (E) has infinitely many solutions. Solve (E). 
 
 

13.  Let 𝐴𝐴 = �6 −1
2 3 � and 𝐵𝐵 = �1 1

1 2�. 

(a) Find 𝐵𝐵−1. 
(b) Find a matrix C such that AB = BC.  
(c) Using the result of (b), find 𝐴𝐴100. 

 
 

14.  (a) Solve the equation sec2𝑥𝑥 − 8cos𝑥𝑥 = 0, where 0 ≤ 𝑥𝑥 < 𝜋𝜋
2
. 

(b) The following figure shows the shaded region bounded by the curve C1: 𝑦𝑦 = sec2𝑥𝑥 
and the curve C2: 𝑦𝑦 = 8cos𝑥𝑥, where O is the origin. Find the area of the shaded region. 
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15. The coordinates of the points A and B are (−1, 0) and (5, 0) respectively. The point C moves 

upwards along the y-axis from the origin O such that the perimeter of ∆ABC increases at a 

constant rate of 1
7
 units per second.   

(a) Find the rate of change of OC when OC = 2√6 units.  
(b) Let ∠ABC = 𝜃𝜃 radians. 

(i) Using the result of (a), find the rate of change of 𝜃𝜃 when OC = 2√6 units. 
(ii) Find the rate of change of 𝜃𝜃 when AC ⊥ CB. 

 
 

 


